Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Journal of Environmental Engineering ; 148(11), 2022.
Article in English | ProQuest Central | ID: covidwho-2016999

ABSTRACT

The World Health Organization (WHO) and US Centers for Disease Control and Prevention (CDC) recommend cleaning soiled surfaces with soap and water, followed by use of approved disinfectant. However, data are lacking on the potential efficacy of soapy water alone as a disinfectant for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is relevant to low-resource settings where soapy water is prevalent for handwashing. To our knowledge, no appropriate biosafety level 1 (BSL-1) surrogate has been identified and confirmed for use in studies with soapy water and the highly infectious SARS-CoV-2. Therefore, our objectives were to determine the efficacy of soapy water alone as a disinfectant against SARS-CoV-2 and if commonly used BSL-1 bacteriophage surrogates could serve as a surrogate model for testing soapy water as a disinfectant. Overall, results indicate that SARS-CoV-2 can be reduced >4 log10 in suspension but only 0.50 log10 on a nonporous surface with 10 min of exposure to 0.5% soapy water. This difference is potentially attributed to less area of exposure on surfaces than in suspension. Phi6 (a verified SARS-CoV-2 surrogate for other disinfectants) was not appropriate for SARS-CoV-2 disinfection with soapy water. Further research is needed to determine an appropriate surrogate for SARS-CoV-2 disinfection with soapy water as disinfection of MS2 was similar to SARS-CoV-2 on surfaces only. Our work highlights the importance of confirming surrogates for each disinfectant used. Based on our results, we do not recommend a change to the current WHO and CDC surface disinfection protocols that recommend using soapy water to preclean a surface before applying disinfectant.

2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: covidwho-1655773

ABSTRACT

SARS-CoV-2 entry into host cells is a crucial step for virus tropism, transmission, and pathogenesis. Angiotensin-converting enzyme 2 (ACE2) has been identified as the primary entry receptor for SARS-CoV-2; however, the possible involvement of other cellular components in the viral entry has not yet been fully elucidated. Here we describe the identification of vimentin (VIM), an intermediate filament protein widely expressed in cells of mesenchymal origin, as an important attachment factor for SARS-CoV-2 on human endothelial cells. Using liquid chromatography-tandem mass spectrometry, we identified VIM as a protein that binds to the SARS-CoV-2 spike (S) protein. We showed that the S-protein receptor binding domain (RBD) is sufficient for S-protein interaction with VIM. Further analysis revealed that extracellular VIM binds to SARS-CoV-2 S-protein and facilitates SARS-CoV-2 infection, as determined by entry assays performed with pseudotyped viruses expressing S and with infectious SARS-CoV-2. Coexpression of VIM with ACE2 increased SARS-CoV-2 entry in HEK-293 cells, and shRNA-mediated knockdown of VIM significantly reduced SARS-CoV-2 infection of human endothelial cells. Moreover, incubation of A549 cells expressing ACE2 with purified VIM increased pseudotyped SARS-CoV-2-S entry. CR3022 antibody, which recognizes a distinct epitope on SARS-CoV-2-S-RBD without interfering with the binding of the spike with ACE2, inhibited the binding of VIM with CoV-2 S-RBD, and neutralized viral entry in human endothelial cells, suggesting a key role for VIM in SARS-CoV-2 infection of endothelial cells. This work provides insight into the pathogenesis of COVID-19 linked to the vascular system, with implications for the development of therapeutics and vaccines.


Subject(s)
Endothelial Cells/virology , Extracellular Space/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Vimentin/metabolism , Virus Internalization , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , Coculture Techniques , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Endothelium, Vascular/virology , HEK293 Cells , Humans , Protein Binding
3.
PLoS One ; 16(2): e0247605, 2021.
Article in English | MEDLINE | ID: covidwho-1105820

ABSTRACT

Neutrophils participate in the early phase of the innate response to uncomplicated influenza A virus (IAV) infection but also are a major component in later stages of severe IAV or COVID 19 infection where neutrophil extracellular traps (NETs) and associated cell free histones are highly pro-inflammatory. It is likely that IAV interacts with histones during infection. We show that histone H4 binds to IAV and aggregates viral particles. In addition, histone H4 markedly potentiates IAV induced neutrophil respiratory burst responses. Prior studies have shown reactive oxidants to be detrimental during severe IAV infection. C reactive protein (CRP) and surfactant protein D (SP-D) rise during IAV infection. We now show that both of these innate immune proteins bind to histone H4 and significantly down regulate respiratory burst and other responses to histone H4. Isolated constructs composed only of the neck and carbohydrate recognition domain of SP-D also bind to histone H4 and partially limit neutrophil responses to it. These studies indicate that complexes formed of histones and IAV are a potent neutrophil activating stimulus. This finding could account for excess inflammation during IAV or other severe viral infections. The ability of CRP and SP-D to bind to histone H4 may be part of a protective response against excessive inflammation in vivo.


Subject(s)
C-Reactive Protein/immunology , Histones/immunology , Influenza A virus/immunology , Influenza, Human/immunology , Neutrophils/immunology , Pulmonary Surfactant-Associated Protein D/immunology , Cells, Cultured , Humans , Immunity, Innate , Inflammation/etiology , Inflammation/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/complications
SELECTION OF CITATIONS
SEARCH DETAIL